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1 Introduction

Following the work [1–3] much progress has been done the last couple of years in under-

standing the duality between N = 4 Super Yang-Mills theory and IIB string theory on

AdS5 × S5 in the large N limit by using integrability. Similar techniques have been used

before in the context of QCD [4, 5]. This development culminated in the proposal of long-

range asymptotic Bethe equations [6], which, when supplemented with the right dressing

factor [7, 8], describe the full asymptotic spectrum of the theory. The Bethe ansatz can be

rigorously derived by diagonalising the asymptotic S-matrix [9, 10], whose weak coupling

limit we will investigate in this paper. It allows for highly nontrivial tests of the AdS/CFT

correspondence as performed in [8, 11]. Interestingly, basically the same S-matrix was ar-

gued [12] to lead to Bethe equations [13] conjectured to describe the spectrum of N = 6

Chern-Simons theory and string theory on AdS4 × CP
3, a recently proposed example of

an AdS/CFT correspondence [14]. However, from the strong coupling perspective some

problems have arisen, see [15–20] for some discussions.

The uncovering of symmetries of a physical system is of fundamental importance as

symmetries constrain the dynamics and can hence help to find solutions of dynamical

equations. In an integrable system, symmetries are even more important as they allow for

an exact solvability of the system. As string theory and N = 4 SYM/N = 6 CS theories

have infinitely many degrees of freedom, the underlying symmetry algebra for this system

should be infinite dimensional as well. Indeed, classical string theory on AdS5 × S5 has

infinitely many symmetries [21], and on the gauge theory side at tree level the corresponding

symmetries have shown to be the Yangian of psu(2, 2|4) in [22, 23]. Unfortunately, it is not

easy to extend this symmetry to the full quantum system as would be required to prove
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that the system is quantum integrable, but there has been work showing that the Yangian

algebra holds at a few loops at least in certain subsectors [24–29].

In this work, we will follow another line of thought uncovering the residual symmetry

algebra which one gets after breaking psu(2, 2|4) in the Bethe Ansatz by choosing a vacuum

state. Naively, this symmetry algebra is given by u(1) ⋉ psu(2|2) × psu(2|2) ⋉ u(1), which

is the same as u(2|2)× u(2|2) after identifying the central elements and the outer automor-

phisms of both u(2|2) = u(1)⋉psu(2|2)⋉u(1)’s [30]. As one has the Yangian as a symmetry

enhancement of psu(2, 2|4), one should expect that u(2|2) × u(2|2) is also promoted to the

Yangian Y (u(2|2) × u(2|2)). However, it turns out that this is not quite the case. Indeed,

the spectral parameters in the Bethe Ansatz of [6] do not enter in the usual way depending

only on differences of the rapidities of the corresponding magnons. In [10] it was shown

that the S-matrix leading to the Bethe Ansatz [6] is not invariant under u(2|2)×u(2|2) but

psu(2|2)× psu(2|2)⋉ R
3, where psu(2|2)⋉ R

3 is the universal central extension of psu(2|2).

The additional central elements are related to the usual spectral parameter as well as to

an additional braiding element [31, 32] which twists the universal enveloping algebra of

psu(2|2) ⋉ R
3. The S-matrix is now a product of two psu(2|2) ⋉ R

3 invariant S-matrices

which are fixed up to the dressing factor on the fundamental representation (in which the

magnons live) of psu(2|2) ⋉ R
3 by only commuting it with the generators of this twisted

enveloping algebra. However, even though psu(2|2) ⋉ R
3 is still finite dimensional and the

matrix structure of the S-matrix is fixed on the fundamental representation without refer-

ring to any infinite dimensional symmetry algebra, it was shown in [33] that this S-matrix

is additionally invariant under the Yangian Y
(
psu(2|2) ⋉ R

3
)
, and indeed for higher di-

mensional representations which are e.g. important for bound state S matrices one needs

this additional Yangian symmetry to fix the S-matrix [34] if one does not want to refer to

the computationally more complicated Yang Baxter equation as done in [35].

It would be desirable to have a universal form for the R-matrix, as it usually exists

for Yangians. Then one could obtain all the matrices in the different representations by

just plugging in the universal R-matrix into the representation maps. One problem is that

psu(2|2) ⋉ R
3 is not simple and has no non-degenerate invariant bilinear form, which is

needed to compute the quantum double and the universal R-matrix. The central charges

can not be paired with anything in psu(2|2) ⋉ R
3. However, two of the central charges

are some kind of gauge transformations and can be removed on the level of semi-classical

strings, and the remaining central charge can be dually paired with one of the external

automorphisms of psu(2|2) [36]. However, this works only on the level of the loop algebra

of u(2|2), which is deformed as a reminiscence of the additional central charges and the

braiding not appearing explicitly on the classical level. The appearance of the loop algebra

is expected as it is the classical analog of the Yangian double.

The classical r-matrix mentioned above arises as a limit R = 1 + 1
gr, where g is

proportional to the square root of the ’t Hooft coupling, it was first studied in [37]. One

can also expand R = 1+ gr and finds that the corresponding classical r-matrix is obtained

from the undeformed loop algebra of u(2|2). In this paper we will obtain the mathematical

quantisation of the quasi-triangular Lie bialgebra u(2|2)[u, u−1] with its classical r-matrix

r = T
u . By this we mean that we find the quasi-triangular Hopf algebra which has this
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Lie bialgebra as its classical limit. This quantisation is the Yangian double DY (u(2|2)),

which on the fundamental evaluation representation leads to the R-matrix R ∝ 1 + 1
uP.

It is of course not the full R-matrix of the AdS/CFT correspondence describing magnon

scattering at weak and string excitation scattering at strong coupling; it does not depend on

g. This is not surprising as the classical Lie bialgebra we quantise does not know about the

central extension and braiding which are necessary to encode the coupling dependence in

the representation of the Lie algebra. The rational R-matrix is nevertheless an interesting

physical object: it describes the scattering of magnons at one-loop N = 4 SYM/two loop

N = 6 CS theories. As this R-matrix is used to derive the Bethe Ansatz which yields the

spectrum of the theories, it effectively means that the solution to the spectral problem at

one-loop SYM/two-loop CS theory is basically determined by symmetries only.

We should emphasis also that the universal R matrices which have been obtained for

Yangians of simple Lie algebras lead on evaluation representations to rational R matrices

with quite complicated prefactors containing products of gamma functions [38]. When

considering e.g. Heisenberg XXX spin chains one has to drop these prefactors. It is very

interesting that in the u(2|2) case considered here no such prefactor appears and the R-

matrix is a simple rational function of the difference of the spectral parameters only.

We will start in section 2 by giving the definition of the Yangian Y(gl(2|2)) in Drinfeld’s

second realization which is suitable for the derivation of the universal R-matrix in section 3.

The derivation follows the methods developed in [38] for simple Lie algebras, and we will

highlight the modifications necessary for the case of gl(2|2) considered here. In section 4 we

will study the fundamental representation of Y(gl(2|2)) and evaluate the universal R-matrix

on the tensor product of two fundamental representation, finding an R-matrix proportional

to the standard rational R-matrix

Let us note that as in this paper we mainly deal with pure algebra, we do not choose

reality conditions and work with the complexified Lie algebra gl(2|2) of u(2|2).

2 The Yangian Y (gl(2|2))

In this section we define the Yangian of gl(2|2) in Drinfeld’s second realization. Let us first

start by giving the definition of the simple Lie superalgebra psl(2|2), whose distinguished

Cartan matrix is given by

apsl(2|2) =




2 −1 0

−1 0 1

0 1 −2



 . (2.1)

The corresponding Chevalley-Serre generators Hi,E
±
i satisfy the usual commutation rela-

tions

[Hi,Hj ] = 0,

[Hi,E
±
j ] = ±aijE

±
j ,

[E+
i ,E−j ] = δijHi, (2.2)
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and the Serre relations

(
ad

E±

1

)2
(E±2 ) =

(
ad

E±

2

)2
(E±1 ) = 0,

(
ad

E±

3

)2
(E±2 ) =

(
ad

E±

2

)2
(E±3 ) = 0,

[E±1 ,E±3 ] = 0, {[E±2 ,E±1 ], [E±2 ,E±3 ]} = 0.

In this distinguished basis E±1,3 are bosonic whereas E±2 is fermionic, and we use the

definition (adX)1 (Y) := [X,Y} := XY − (−1)|X||Y|YX, whereas [X,Y] := XY − YX,

{X,Y} := XY + YX and {X,Y] := XY + (−1)|X||Y|YX.Furthermore, we note that in

psl(2|2) the light-like combination H1 + 2H2 + H3 is zero.

From this definition it is straightforward to write down the relations for the generators

E±i,n, Hi,n, i = 1, 2, 3 and n = 0, 1, . . . of the Yangian Y (psl(2|2)),

[Hi,m,Hj,n] = 0, [Hi,0,E
+
j,m] = aij E+

j,m,

[Hi,0,E
−
j,m] = −aij E−j,m, [E+

i,m,E−j,n} = δi,j Hj,n+m,

[Hi,m+1,E
±
j,n] − [Hi,m,E±j,n+1] = ±

1

2
aij{Hi,m,E±j,n},

[E±i,m+1,E
±
j,n} − [E±i,m,E±j,n+1} = ±

1

2
aij{E

±
i,m,E±j,n], (2.3)

Sym{k}[E
±
i,k1

, [E±i,k2
, . . . [E±i,knij

,E±j,l} . . . }} = 0, i 6= j, nij = 1 + |aij|,

{[E±2,k1
,E±1,k2

], [E±2,k3
,E±3,k4

]} = 0, kj = 0, 1, . . . . (2.4)

All these relations follow the general methods outlined for simple Lie algebras in [39] and

for sl(n|m), n 6= m in [40]. At this point there is no modification necessary compared to the

general theory. The clear distinction of the case of n = m is the fact that the Cartan matrix

is degenerate. This is an obstruction to obtain the quantum double and the corresponding

universal R-matrix. As explained in the introduction, this is also not what we really want.

We will hence extend psl(2|2) to its central extension sl(2|2), and also adjoin the outer

automorphism getting gl(2|2). Let us note that the way we do this extension works equally

well for all psl(n|n), even though we did not calculate these cases explicitly.

sl(2|2) is obtained from psl(2|2) by relaxing the condition H1 + 2H2 + H3 = 0 to

C :=
1

2
(H1 + 2H2 + H3) central. (2.5)

We furthermore introduce an additional Cartan generator H4 such that the extended Cartan

matrix is given by

a =





2 −1 0 0

−1 0 1 1

0 1 −2 0

0 1 0 0




. (2.6)

This means that H4 is precisely the dual operator to the central charge C, it acts as an

external derivation on sl(2|2). Concerning the modification of the definition of the Yangian

the relations will look the same as in the standard case or the case of psl(2|2) in (2.3) by

adjoining generators H4,n.
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In what follows we will also need a Cartan-Weyl basis for gl(2|2). We choose it the

following way: Let α1, α2, α3 be the three simple roots corresponding to E+
i , i = 1, 2, 3,

then a set of all positive roots is given by

β1 = α1, β2 = α1 + α2, β3 = α1 + α2 + α3, β4 = α2, β5 = α2 + α3, β6 = α3. (2.7)

The corresponding generators are given by

E+
β2

= [E+
1 ,E+

2 ], E−β2
= [E−2 ,E−1 ],

E+
β3

= [[E+
1 ,E+

2 ],E+
3 ], E−β3

= [[E−2 ,E−1 ],E−3 ],

E+
β5

= [E+
2 ,E+

3 ], E−β5
= [E−2 ,E−3 ]. (2.8)

When it comes to the Yangian one can basically think of the root ξ±i,n as corresponding to

the root vector ±αi + nδ, with δ being the affine root. Note however that the Yangian is

a deformation of the universal enveloping algebra of the loop algebra, hence they are not

precisely the same.

We also give a third representation appearing in the literature [10, 41] which defines

gl(2|2) close to the fundamental matrix representation as 4 × 4 supermatrices. Let Rb
a,

L
β
α, a, b, α, β = 1 . . . 2 denote a linear bases of the bosonic sl(2) subalgebras, and the

supercharges transform in the two dimensional fundamental/antifundamental of the sl(2)′s

with the indices chosen appropriately, the full commutations relations read

[Ra
b,R

c
d] = δc

bR
a
d − δa

dRc
b, [Lα

β ,Lγ
δ] = δγ

βLα
δ − δα

δ Lγ
β, (2.9)

[Ra
b,Q

γ
d] = −δa

dQγ
b +

1

2
δa
b Qγ

d, [Lα
β,Qγ

d] = +δγ
βQα

d −
1

2
δα
β Qγ

d, (2.10)

[Ra
b,S

c
δ] = +δc

bS
a
δ −

1

2
δa
b Sc

δ, [Lα
β,Sc

δ] = −δα
δ Sc

β +
1

2
δα
β Sc

δ,

{Qα
b,S

c
δ} = δc

bL
α

δ + δα
δ Rc

b + δc
bδ

α
δ C, (2.11)

{Qα
b,Q

γ
d} = εαγεbdP, (2.12)

{Sa
β,Sc

δ} = εacεβδK. (2.13)

Here, C = 1
2 (R1

1 + R2
2 + L1

1 + L2
2) is the central element.

The relation to the Chevalley-Serre basis for gl(2|2) is given by identifying

H1 = R1
1 − R2

2, E+
1 = R1

2, E−1 = R2
1,

H2 = R2
2 + L1

1, E+
2 = S2

1, E−2 = Q1
2,

H3 = −L1
1 + L2

2, E+
3 = L1

2, E−3 = −L2
1,

H4 =
1

4
(R1

1 + R2
2 − L1

1 − L2
2). (2.14)

Now the fundamental matrix representation on the four dimensional graded vector space

such that the first two base elements are even and the remaining two are odd is given

as follows:

Ra
b = Ea

b , Lα
β = Eα+2

β+2 ,

Qα
b = Eα+2

b , Sb
α = Eb

α+2. (2.15)
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Here, Ei
j , i, j = 1, . . . 4 denotes the four by four-matrix with a one at the ith row and the

jth column and zero otherwise.

3 The universal R-matrix of gl(2|2)

In this section we will write down the universal R-matrix for the quantum double of

Y (gl(2|2)), which is the double Yangian DY (gl(2|2)). It is the quantisation of the Lie

bialgebra gl(2|2)[u, u−1] with classical r-matrix r = T
u , where T is the Casimir of gl(2|2).

We note that for the derivation of the universal R-matrix outlined in [38] for simple Lie

algebras or in [40] for sl(n|m), n 6= m the crucial ingredient is the existence of a non-

degenerate invariant bilinear form on the Lie algebra. As this form exists for gl(2|2) the

construction of the quantum double Y (gl(2|2)) works in the same way as for simple Lie

algebras or sl(n|m), n 6= m.

Let us briefly recall how the double construction worked on the classical case, for any

Lie superalgebra with non-degenerate invariant bilinear form κ. One starts with the Lie

algebra g[u] of polynomials in u with values in the Lie superalgebra g, whose generators

we call Ja
n, n ∈ N, and the generators of degree 0 are identified with the generators of g.

Then the double of g[u] is the loop algebra g[u, u−1].1 The pairing is given by

(Ja
n,Jb

m) = κabδn,−m−1. (3.1)

The resulting canonical classical r-matrix for this double is given by

r =
∞∑

n=0

κabJ
a
n ⊗ Jb

−n−1 =
T

u1 − u2
. (3.2)

upon identifying Ja
n = unJa

0.

Now the double Yangian is a deformation of the universal enveloping algebra of

g[u, u−1], and as g[u, u−1] is a quasi-triangular bialgebra, the double Yangian DY (g) is

a quasi-triangular Hopf Algebra.2

3.1 The universal R-matrix

The universal R-matrix of DY (gl(2|2)) has the form

R+RHR−, (3.3)

with

R+ =

→∏

α∈∆+

exp(−a(α)E+
α ⊗ E−α ), (3.4)

R− =
←∏

α∈∆+

exp(−a(α)E−α ⊗ E+
α ) (3.5)

1We will ignore mathematical subtleties involving the fact that the dual of g[u] is in fact larger and

involves infinite formal power series. In fact we will always allow for formal power series in both u and u
−1.

2As the resulting classical or quantum r/R matrices are strictly speaking not elements of g[u, u
−1] ⊗

g[u, u
−1] or DY (g) ⊗ DY (g) respectively, one should strictly not call the structures quasi-triangular but

pseudotriangular [42].

– 6 –
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and

RH =

∞∏

n=0

exp

((
d

dλ
Ki,+(λ)

)

m

⊗
(
Ci,j(T

1/2)Kj,−(µ + 2n + 1)
)

−m−1

)
. (3.6)

The expressions for R± do not need much explanation, apart from the fact that the arrows

indicate in which order the product is taken with respect to the root ordering, a(α) is

some normalisation and ∆+ denotes a set of all positive roots of the Yangian, i.e. ∆+ =

{β + nδ|β positive root of gl(2|2), δ affine root , n ∈ Z}. We should also note that these

formulae have only been conjectured but not proven in [38], so we make no claim that they

are correct universally. However, when evaluating these expressions on the fundamental

evaluation representation we get the correct result indicating, but not proving that the

expressions are indeed correct.

The most nontrivial part is RH , it needs several explanations as it is quite complicated

looking, and generically for simple Lie algebras it does not even become simple for funda-

mental evaluation representations but results in complicated expressions involving gamma

functions. First, we note that if we have a matrix X = (Xij), then by X(q) we mean the

matrix ([Xij ]), with [Xij ] denoting the q number [x] = qx−q−x

q−q−1 . Now C(q) is proportional

to the inverse of the q-Cartan matrix A(q) such that all entries contain only integer powers

of q, i.e. we have

C(q) = l(q)A(q)−1. (3.7)

For simple Lie algebras l is proportional to the dual Coxeter number [38]. However, in the

case of gl(2|2) or psl(2|2), the dual Coxeter number is zero. One way to obtain integer

valued inverse q-Cartan matrices is of course by just multiplying by the determinant of the

q-Cartan matrix. For the extended one of gl(2|2) we have

A(q) =





q + q−1 −1 0 0

−1 0 1 1

0 1 q + q−1 0

0 1 0 0




, (3.8)

its determinant is [2]2. However, it suffices to multiply the inverse by only [2] to obtain the

minimal integer valued inverse Cartan matrix

C(q) := [2](A(q))−1 =





1 0 0 1

0 0 0 [2]

0 0 −1 1

1 [2] 1 0



 . (3.9)

This seems to be the right choice for the universal R-matrix, even though it would be nice

to better understand where the right choice comes from.

The operator T is defined as the shift operator acting on functions in v, i.e. T xf(v) =

f(λ + x), hence by C(T x) we mean the matrix C(q) where we substituted q by the opera-

tor T x.

– 7 –
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Furthermore, the generators Ki,±(λ) are defined as

Ki,±(λ) = log Hi,±(λ), (3.10)

where

Hi,+(λ) = 1 +

∞∑

n=0

Hi,nλ−n−1, Hi,−(λ) = 1 −
−∞∑

n=−1

Hi,nλ−n−1. (3.11)

We will not explicitly write down the relations for the generators of negative degree, they

can be derived in the same way as for simple Lie algebras as outlined in [38]. If we write

(K(λ))n we mean the n’th coefficient in the expansion in λ or λ−1 respectively.

4 The R-matrix on the fundamental representation

4.1 Fundamental evaluation representation of Y (gl(2|2))

In this section we want to study the four dimensional fundamental evaluation representation

of the Yangian Y (gl(2|2)) in Drinfeld’s second realization. For the centrally extended case

Y
(
psu(2|2) ⋉ R

3
)

this was done in [43], but in the purely fermionic Chevalley-Serre basis,

whereas here we use the distinguished one. We also have to supplement the information

for the automorphism.

Let us first look at the presentation of the Yangian in the first realisation, i.e. using

a linear basis such as the one defined in (2.14) for gl(2|2).3 If we denote such linear basis

by Ja
n, a = 1, . . . 16, n = 0, 1, . . . , then the fundamental evaluation representation of the

Yangian in the first realisation is given by

Ĵa = uJa, (4.1)

where on the right hand side we denote the generator Ja of gl(2|2) in the fundamental

representation by the same symbol as the abstract Lie algebra generator. That means all

generators of degree one are represented by the corresponding degree zero generator times

the spectral parameter u. If we go to the generators of the Yangian in the second realisation

the spectral parameter gets shifted in a different way for different generators. To derive

this shift one evaluates the isomorphism between the first and second realisation on the

fundamental representation. This isomorphism is given by

Hi,0 = Hi, E+
i,0 = E+

i , E−i,0 = E−i ,

Hi,1 = Ĥi − vi, E+
i,1 = Ê+

i − wi, E−i,1 = Ê−i − zi, (4.2)

where the special elements are given by

vi =
1

4

∑

β

(αi, β) {E−β ,E+
β } −

1

2
H2

i ,

wi =
1

4

∑

β

(−1)βi{E−β , [E+
i ,E+

β ]} −
1

4
{Hi,E

+
i },

zi = −
1

4

∑

β

{[E−i ,E−β ],E+
β } −

1

4
{Hi,E

−
i }. (4.3)

3For more details about the relation between first and second realisation see e.g. [39, 43, 44].
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Evaluating on the fundamental evaluation representation of gl(2|2), we obtain

vi = aiHi,

wi = aiE
+
i ,

zi = aiE
−
i . (4.4)

with ai = (−1
2 ,−1,−1

2 ).

Now if we represent the generators of the first realisation as in (4.1), i.e. Ĵa = uJa,

then we get the following representation for the generators of the second realisation:

Xi,1 = ũiXi, X = H,E±, (4.5)

with ũi = (u + 1
2 , u + 1, u + 1

2).

So far we have not specified the isomorphism for the automorphism H4. As there is

no corresponding root vector α4, we first have to make clear that when we write (α4, β) in

the expression for v4, we mean the Killing form str(H4,Hβ). Then we can indeed consider

the expression 4.3 also for v4, but when we evaluate it on the fundamental representation

we find that v4 is proportional to H4 only up to a shift by the indentity matrix. This

is not surprising as H4 cannot be obtained as a commutator of any element in gl(2|2),

and if we shift it by the central element we remain with the same commutation relations.

Furthermore, the defining relations for the second realization are violated if we use this

naive isomorphism, hence we define

H4,1 := Ĥ4 − v4 −
1

4
C, (4.6)

and find that all defining relations are satisfied. Furthermore, on the fundamental repre-

sentation we obtain

H4,1 = ũ4H4 = (u + 1)H4. (4.7)

Having established the evaluation representation for the Chevalley-Serre generators,

we can straightforwardly obtain the representation for all the other remaining generators.

We can define the generators such that

E±bose,n =

(
u +

1

2

)n

E±bose,0, E±fermi,n = (u + 1)nE±fermi,0, Hi,n = un
i Hi,0. (4.8)

4.2 Yangs R-matrix for gl(2|2)

Having established the fundamental evaluation representation of Y (gl(2|2)) it is straight-

forward to write down the representation of the universal R-matrix on the tensor product

of two fundamental representations with spectral parameters u, v. First we note that the

root parts of the universal R-matrix can be factorised as follows:

R+ =

→∏

k=1,...6

exp

(
−
∞∑

n=0

E+
αk,n ⊗ E−αk ,−n−1

)
,

R− =

←∏

k=6,...1

exp

(
−
∞∑

n=0

E−αk,n ⊗ E+
αk ,−n−1

)
. (4.9)
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Using the above evaluation representation we can sum up the resulting geometric series,

and, using the fact that on the fundamental representation all roots are nilpotent, we obtain

R+ =

→∏

k=1,...6

exp

(
1

u − v
E+

αk
⊗ E−αk

)
=

→∏

k=1,...6

(
1 +

1

u − v
E+

αk
⊗ E−αk

)
,

R− =

→∏

k=1,...6

exp

(
1

u − v
E−αk

⊗ E+
αk

)
=

←∏

k=6,...1

(
1 +

1

u − v
E−αk

⊗ E+
αk

)
. (4.10)

For the Cartan part we note that on the fundamental representation the generating func-

tions sum up as

Hi,+(λ) = 1 +
1

λ − ui
Hi,

Hi,−(µ) = 1 −
1

vi − µ
Hi. (4.11)

Note that Hi,± formally represent the same function, once expanded about infinity and

once about zero. The terms appearing in RH are the coefficients of the series

Ki,+(λ)′ = log Hi,+(λ)′ =
1

λ − ui − Hi
−

1

λ − ui

=

∞∑

n=0

λ−n−1 ((ui − Hi)
n − un

i ) ,

Ki,−(λ) = log Hi,−(λ) = log
ui − Hi

ui

λ
ui−Hi

− 1
λ
ui

− 1

= log
ui − Hi

ui
+
∞∑

n=1

(
( λ

ui
)n − ( λ

ui−Hi
)n
)

n
. (4.12)

In RH this leads to terms of the form

∞∏

m=1

exp

(

−
∞∑

n=0

(
u − x

v − y − 2n

)m 1

m

)

=

∞∏

n=0

(
1 −

u − x

v − y − 2n

)

=

∞∏

n=0

(
v − u − 2n + x − y

v − y − 2n

)

=
Γ
(y−v

2

)

Γ
(u−v+y−x

2

) . (4.13)

Evaluating RH completely using Mathematica we obtain the result that all gamma func-

tions cancel, the full R-matrix on the fundamental representation is given by

R =
1 + 2(u − v)

1 − 2(u − v)

(
u − v

u − v + 1
+

1

u − v + 1
P

)
. (4.14)

Here, P is the graded permutation operator. Note that to obtain the physical S-matrix

for N = 4 SYM or Chern-Simons theory leading to the appropriate Bethe Ansätze the

hermitian representation for the Yangian of u(2|2) requires u → iu, with u being the real

valued rapidity.
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5 Discussion

In this paper we derived the universal R-matrix for the double Yangian of gl(2|2). We

also obtained the fundamental evaluation representation and evaluated the universal R-

matrix on the tensor product of two fundamental representations, the resulting R-matrix

is, as expected for R-matrices of sl(n), gl(n|m) type, proportional to Yangs R-matrix(
u

u+1 + 1
u+1P

)
. However, unlike for sl(n) considered in [38], the gamma functions ap-

pearing in the Cartan part RH of the R-matrix cancel, and the resulting R-matrix is a

rational function depending on the difference of the spectral parameters only. This is re-

quired to obtain the correct Bethe Ansatz for weakly coupled N = 4 SYM as well as

Chern-Simons theories. However, the factor we obtain seems to be not exactly correct; this

could be explained by a change of basis and additional diagonal twists. One can obtain

this S-matrix by considering the weak coupling limit of the full S-matrix of [10] leading

to the full long-range Bethe equations of N = 4 SYM. A natural question following the

construction of the universal R-matrix for gl(2|2) is if one can also derive the universal

R-matrix leading to the all loop S-matrix. It was shown that this all loop S-matrix is

also invariant under Yangian symmetry [33], and this Yangian can also be formulated in

the second realisation [43]. Then one is lead to the problem how to treat the additional

central elements which are necessary to describe the long-range effects. A related question

is the role of the automorphisms [33, 45]. On the level of the classical r-matrix [33] both

at strong and weak coupling it was shown how to effectively remove these extra central

elements and the braiding describing length changing [32] and obtain the classical r-matrix

from a classical double of a deformed gl(2|2) loop algebra. This work makes it plausible that

the quantum double and universal R-matrix should also exist for the centrally extended

algebra psu(2|2) ⋉ R
3 and will be a deformation of the universal R-matrix for Y(gl(2|2))

considered here. Note that one can rewrite the S-matrix of [10] in such a way which makes

it apparent which part comes from the Yangian structure and which part comes from the

central extension and braiding [46]. Finding the universal R-matrix is an important task

as this universal form might be used to compute bound state S matrices as done on the

level of representations in [35] or give some ideas about the origin of the dressing phase.

Another important task is finding out if the S-matrix of N = 6 Chern-Simons theory is

really the same as the one for N = 4 SYM, only that for the former one has two different

kinds of particles, whereas for the latter one needs to take the tensor product of two fun-

damental representations to form a magnon. In [12] it was argued that this is the case as

this S-matrix leads to the Bethe equations [13]. However, one should thouroughly derive

the central extension and the braiding of [32] as this is required to obtain a non-trivial

S-matrix not depending on the difference of spectral parameters only. Furthermore, one

should find Yangian symmetry also on the Chern-Simons side as done for N = 4 for tree

level [22, 23].

Some other relating questions following this work concern mathematical generalisa-

tions. It is easy to convince oneself that one can generalise the methods used here to derive

the universal R matrices for all Yangians based on gl(n|m). It would be interesting to find

out if the prefactors also have such simple structure as in the case of gl(2|2), and if the
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formulae will still be practical in the sense that one can obtain Yangs R-matrix on the

fundamental representation straightforwardly by plugging in the represented generators.

Furthermore, one should study more complicated representations of the Yangian. Other

interesting generalisations would involve studying q deformations as done on the level of

the spin chain and S-matrix in [47] or studying more involved algebras such as the related

exceptional superalgebra d(2, 1;α) [48].
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